Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Ecol Evol ; 10(18): 10031-10043, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33005361

RESUMO

White-nose syndrome (WNS), caused by the fungal pathogen Pseudogymnoascus destructans (Pd), has driven alarming declines in North American hibernating bats, such as little brown bat (Myotis lucifugus). During hibernation, infected little brown bats are able to initiate anti-Pd immune responses, indicating pathogen-mediated selection on the major histocompatibility complex (MHC) genes. However, such immune responses may not be protective as they interrupt torpor, elevate energy costs, and potentially lead to higher mortality rates. To assess whether WNS drives selection on MHC genes, we compared the MHC DRB gene in little brown bats pre- (Wisconsin) and post- (Michigan, New York, Vermont, and Pennsylvania) WNS (detection spanning 2014-2015). We genotyped 131 individuals and found 45 nucleotide alleles (27 amino acid alleles) indicating a maximum of 3 loci (1-5 alleles per individual). We observed high allelic admixture and a lack of genetic differentiation both among sampling sites and between pre- and post-WNS populations, indicating no signal of selection on MHC genes. However, post-WNS populations exhibited decreased allelic richness, reflecting effects from bottleneck and drift following rapid population declines. We propose that mechanisms other than adaptive immunity are more likely driving current persistence of little brown bats in affected regions.

2.
Ecol Evol ; 9(18): 10263-10276, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31624550

RESUMO

Rapid global climate change is resulting in novel abiotic and biotic conditions and interactions. Identifying management strategies that maximize probability of long-term persistence requires an understanding of the vulnerability of species to environmental changes. We sought to quantify the vulnerability of Kirtland's Warbler (Setophaga kirtlandii), a rare Neotropical migratory songbird that breeds almost exclusively in the Lower Peninsula of Michigan and winters in the Bahamian Archipelago, to projected environmental changes on the breeding and wintering grounds. We developed a population-level simulation model that incorporates the influence of annual environmental conditions on the breeding and wintering grounds, and parameterized the model using empirical relationships. We simulated independent and additive effects of reduced breeding grounds habitat quantity and quality, and wintering grounds habitat quality, on population viability. Our results indicated the Kirtland's Warbler population is stable under current environmental and management conditions. Reduced breeding grounds habitat quantity resulted in reductions of the stable population size, but did not cause extinction under the scenarios we examined. In contrast, projected large reductions in wintering grounds precipitation caused the population to decline, with risk of extinction magnified when breeding habitat quantity or quality also decreased. Our study indicates that probability of long-term persistence for Kirtland's Warbler will depend on climate change impacts to wintering grounds habitat quality and contributes to the growing literature documenting the importance of considering the full annual cycle for understanding population dynamics of migratory species.

3.
PLoS One ; 12(1): e0170099, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28081271

RESUMO

The North American beaver (Castor canadensis) is a managed species in the United States. In northern Wisconsin, as part of the state-wide beaver management program, the Chequamegon-Nicolet National Forest removes beavers from targeted trout streams on U.S. Forest Service lands. However, the success of this management program has not been evaluated. Targeted removals comprise only 3% of the annual beaver harvest, a level of effort that may not affect the beaver population. We used colony location data along Forest streams from 1987-2013 (Nicolet, northeast Wisconsin) and 1997-2013 (Chequamegon, northwest Wisconsin) to assess trends in beaver colony density on targeted trout streams compared to non-targeted streams. On the Chequamegon, colony density on non-targeted trout and non-trout streams did not change over time, while colony density on targeted trout streams declined and then stabilized. On the Nicolet, beaver colony density decreased on both non-targeted streams and targeted trout streams. However, colony density on targeted trout streams declined faster. The impact of targeted trapping was similar across the two sides of the Forest (60% reduction relative to non-targeted trout streams). Exploratory analyses of weather influences found that very dry conditions and severe winters were associated with transient reductions in beaver colony density on non-targeted streams on both sides of the Forest. Our findings may help land management agencies weigh more finely calibrated beaver control measures against continued large-scale removal programs.


Assuntos
Roedores/fisiologia , Animais , Florestas , Modelos Teóricos , Densidade Demográfica , Estações do Ano , Estados Unidos , Tempo (Meteorologia)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...